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1. Consider the following initial-boundary value problem for the heat equation:

%( 1) — ( ,t)=0 for x€(0,1),t>0,
u(zr,0) = sin?(27x),
u(0,t) = u(1,t) = 0.

Find the solution u expressed as a trigonometric series.

2. Consider the following initial-boundary value problem for the Klein—(Gordon equation:

u(r,t) — Le(z,t) —ult,x) =0 for x€(0,1),¢>0,
=z(1 -

u(z,0) z), G(z,0)=0,
w(0,t) = u(1,t) = 0.

Find the solution u expressed as a trigonometric series.

3. Consider the following initial-boundary value problem for the Schrédinger equation:

o)+ B30 =0 o 2€ (01,150,
u(x,0) = sin®(7z),

u(0,t) = u(1,t) = 0.

Find the solution u expressed as a trigonometric series.

4. Let 1 be the solution to the following initial value problem for the biharmonic heat equation
on the whole line:
{%f(x t)+8x4< t)=0 for ze€R,t>0,

U(x,0) = ().

Show that the solution is given by the formula

ww##%/jc:(‘“; ) vt

where GG : R — R is the function for which its Fourier transform is given by
A 4

G(a) =e*.

(note that, a priori, the inverse Fourier transform of the above expression should be a function
G : R — C; show that G is indeed real valued, i.e. that G(z) = G(x) for any = € R.)
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5. Let us consider the following semi-infinite initial-boundary value problem for the heat equation:

Gt(x,t) = S(a,0) = f(z) for € (0,+00), t>0,
u(x,0) =0,

u(0,t) =0,

where

22

flx)=ze 7.
By extending u(z,t) and f(z) as odd functions of x € R, solve the above problem by applying
the Fourier transform in the xz-variable. Verify that the solution u(z,t) that you get in this way
is indeed odd and that u(z,t) satisfies the required boundary condition at z = 0 (this should
be automatically true for continuous odd functions).

6 (extra). Let V : R — R be a smooth function (which we will call the potential) and let u : Rx [0, +00) —
C be a solution to the Schrédinger equation:

Ou 0*u
za(x,t) + @(x,t) — V(x)u(z,t) = 0.

We will assume that, at any time ¢ > 0, we have that u(x,t), 2

, 52(x,t) — 0 as @ — +oo.

(a) In the special case when V(x) = 0, find an expression for u if the initial data at ¢t = 0 is
given by
g2
u(z,0) = ez,
b) In the general case (i.e. when V' is not necessarily zero), show that the quantity
g

“+oo
R

oo

is constant in time (this motivates the interpretation of |u(x,t)|* as the probability density
of the particle described by u). Hint: Use the fact that |u|* = Re{u - u} and show first
that Oy|u|* = 2Re{Otu - u}. Then, use the equation to reezpress Oyu and inlegrate by parts
in x if necessary. Note that O(Re(f)) = Re(0f) and Of = Of.

(c) Show that the total energy of u, defined by
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o0

+ V(x) |u(z, t)|2> dz

is also constant in time. Hint: Differentiate the above expression in t like before, integrate
by parts with respect to the 0,-derivatives and use the equation to substitute for the 2y

Ox?
term.
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