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1. Consider the following initial-boundary value problem for the heat equation:
∂u
∂t
(x, t)− ∂2u

∂x2
(x, t) = 0 for x ∈ (0, 1), t > 0,

u(x, 0) = sin2(2πx),

u(0, t) = u(1, t) = 0.

Find the solution u expressed as a trigonometric series.

2. Consider the following initial-boundary value problem for the Klein�Gordon equation:
∂2u
∂t2

(x, t)− ∂2u
∂x2

(x, t)− u(t, x) = 0 for x ∈ (0, 1), t > 0,

u(x, 0) = x(1− x), ∂u
∂t
(x, 0) = 0,

u(0, t) = u(1, t) = 0.

Find the solution u expressed as a trigonometric series.

3. Consider the following initial-boundary value problem for the Schrödinger equation:
i∂u
∂t
(x, t) + ∂2u

∂x2
(x, t) = 0 for x ∈ (0, 1), t > 0,

u(x, 0) = sin2(πx),

u(0, t) = u(1, t) = 0.

Find the solution u expressed as a trigonometric series.

4. Let ψ be the solution to the following initial value problem for the biharmonic heat equation
on the whole line: {

∂ψ
∂t
(x, t) + ∂4ψ

∂x4
(x, t) = 0 for x ∈ R, t > 0,

ψ(x, 0) = ψ0(x).

Show that the solution is given by the formula

ψ(x, t) =
1√
2π

1

t
1
4

� +∞

−∞
G

(
x− y

t
1
4

)
ψ0(y) dy,

where G : R→ R is the function for which its Fourier transform is given by

Ĝ(a) = e−a
4

.

(note that, a priori, the inverse Fourier transform of the above expression should be a function
G : R→ C; show that G is indeed real valued, i.e. that G(x) = G(x) for any x ∈ R.)
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5. Let us consider the following semi-in�nite initial-boundary value problem for the heat equation:
∂u
∂t
(x, t)− ∂2u

∂x2
(x, t) = f(x) for x ∈ (0,+∞), t > 0,

u(x, 0) = 0,

u(0, t) = 0,

where

f(x) = xe−
x2

2 .

By extending u(x, t) and f(x) as odd functions of x ∈ R, solve the above problem by applying
the Fourier transform in the x-variable. Verify that the solution u(x, t) that you get in this way
is indeed odd and that u(x, t) satis�es the required boundary condition at x = 0 (this should
be automatically true for continuous odd functions).

6 (extra). Let V : R→ R be a smooth function (which we will call the potential) and let u : R×[0,+∞) →
C be a solution to the Schrödinger equation:

i
∂u

∂t
(x, t) +

∂2u

∂x2
(x, t)− V (x)u(x, t) = 0.

We will assume that, at any time t ⩾ 0, we have that u(x, t), ∂u
∂x
(x, t) → 0 as x→ ±∞.

(a) In the special case when V (x) = 0, �nd an expression for u if the initial data at t = 0 is
given by

u(x, 0) = eiλx−
x2

2 .

(b) In the general case (i.e. when V is not necessarily zero), show that the quantity

� +∞

−∞
|u(x, t)|2 dx

is constant in time (this motivates the interpretation of |u(x, t)|2 as the probability density
of the particle described by u). Hint: Use the fact that |u|2 = Re{u · ū} and show �rst

that ∂t|u|2 = 2Re{∂tu · ū}. Then, use the equation to reexpress ∂tu and integrate by parts

in x if necessary. Note that ∂(Re(f)) = Re(∂f) and ∂f̄ = ∂f .

(c) Show that the total energy of u, de�ned by

E[u](t) =

� +∞

−∞

(∣∣∣∣∂u∂x(x, t)
∣∣∣∣2 + V (x) |u(x, t)|2

)
dx

is also constant in time. Hint: Di�erentiate the above expression in t like before, integrate

by parts with respect to the ∂x-derivatives and use the equation to substitute for the ∂2u
∂x2

term.
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